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MORPHOLOGY AND FINITE STRAIN RHEOLOGY
OF NBR/TPU BLENDS

Z. Susteric
I. Dimitrievski
Sava d.d., R & D Institute, Slovenia

Due to orientational and dispersional interactions between molecules in polar
polymer blends, such as NBR=TPU, secondary molecular networks are formed,
which, despite their weakness, essentially affect rheological properties of the
blends. Being highly susceptible to strain and temperature changes, the secondary
networks under such conditions undergo breakdown, causing changes in blends’
rheological characteristics. Particularly suitable method for tracking such net-
work breakdown is by measuring the blends’ dynamic mechanical functions at
different strains and temperatures. For elucidation of these measurements a model
is chosen, analysing a secondary network breakdown by statistical mechanics,
whose final result is strain, temperature and compositional dependence of the
blends’ dynamic mechanical functions. Along with the measurements’, the chosen
model, originally devised to study rheological properties of carbon black filled
rubbers, also provides means for quantitative characterization of secondary net-
works in polar polymeric systems.

Keywords: dynamic mechanical functions, morphology, polar polymer blends,
secondary interactions

1. INTRODUCTION

Butadiene-acrylonitrile rubber (NBR) and thermoplastic polyurethane
(TPU) are both polar in character and hence, owing to orientational
and dispersional interactions [1, 2] in mutual blends, they form
associations of NBR-NBR, NBR-TPU and TPU-TPU type. These
associations act as multifunctional junctions, or intermolecular lin-
kages in the blends, forming a secondary network that represents
their morphological structure when in amorphous state. To the blends’
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morphology also contribute molecular entanglements [3], but as
intermolecular linkages these are less expressive in polar systems.

Orientational interactions are of short range and weak in compar-
ison with primary (ionic or covalent) interactions, their energies
ranging typically within 5�25 kJmol7 1. Nevertheless, rheological
properties of polar blends are essentially affected by the multitude of
intermolecular linkages produced by orientational interactions, and
remarkably, regardless of the blends being uncrosslinked or cross-
linked by primary (covalent) linkages.

Weakness of the secondary linkages makes the secondary networks
formed in polar blends highly susceptible to strain and temperature
changes. This is reflected in strong dependence of the blends’ rheolo-
gical properties on strain and temperature. Already with slight
increase in deformation and=or temperature a secondary network
undergoes gradual breakdown, but eventually restores and regains its
former properties when left at rest. Primary networks, on the other
hand, never restore after breakdown, which, however, occurs under
much more severe conditions.

Using rather generalized model, previously constructed to explain
rheological behaviour of carbon black filled rubbers at low strains [4],
the objective of this work is to show relationship between secondary
networks in polar NBR=TPU blends and their rheological properties.
The model also enables determination of characteristic energies for
strain and thermally induced breakdown of the blends’ secondary
networks, as well as a material constant characteristic of the blends’
composition.

2. THEORETICAL

To pursue the foregoing objective, it has proved feasible to study
rheological properties of NBR=TPU blends in terms of their mor-
phology by strain, temperature and compositional dependence of the
blends’ dynamic mechanical functions, i.e., the storage and loss elastic
moduli, at a frequency low enough to allow undisturbed changes of
molecular conformations in rather broad ranges of strain and tem-
perature. Particularly useful type of deformation for this purpose is
oscillating shear strain, since shear moduli are well defined up to
rather high strain amplitudes.

Irrespective of deformation type, the storage modulus is by the
theory of rubber elasticity proportional to the intermolecular linkage
(primary and=or secondary) density and temperature [5]. Taking
oscillating shear deformation as an example, Figure 1 schematically
demonstrates a typical strain amplitude (g) dependence of dynamic
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mechanical functions for materials possessing secondary networks at
moderate frequency and temperature.

As the secondary network starts degrading with increasing strain,
the secondary linkage density diminishes and the storage shear
modulus, G0, monotonically decreases from its highest value at zero-
strain toward a low but finite terminal value, when the network is
completely destroyed.

Since the secondary network breakdown is also an energy dissipa-
tion process, the loss shear modulus, G00, being proportional to sec-
ondary linkage density change is influenced accordingly. With
increasing strain it first increases, reaching its maximum at the strain
of the highest secondary network breakdown rate, and then, similarly
to the storage modulus, decreases, to attain a low finite value at large
strains. It should be mentioned, however, that there is another energy
dissipation process, namely the internal friction [6], concurrently
occurring in the strained material and affecting its loss modulus. The
energy dissipated by this process strongly depends on strain rate.

The effect of temperature on dynamic mechanical functions, on the
other hand, is not as straightforward as the one of strain. Although the
theory of rubber elasticity, for entropic reasons, predicts G0 to be
proportional to the temperature, the secondary linkage density
decreases with increasing temperature somewhat stronger, making

FIGURE 1 Schematically presented dependence of storage and loss shear
moduli, G0 and G00, on shear strain amplitude.
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the net effect a decrease in G0. The same goes for G00, but to its decrease
also contributes diminished internal friction. It is important to note
that the effect of temperature on G0 and G00 gradually decreases with
increasing strain and disappears completely at high strains, which is
plausible because the secondary network is then thoroughly
destroyed.

Such interpretation of dynamic mechanical functions’ dependence
on strain and temperature seems qualitatively sensible, but in order to
quantitatively confirm it, the relevant expressions for G0 and G00

should be derived from more primary principles. To achieve this, a
model is used, originally devised to describe low strain and tempera-
ture dependence of dynamic functions for carbon black filled rubber
through quantitative account of the breakdown of black’s van der
Waals bonded secondary agglomeration network [4]. Generalized for
higher strains, the model, based on statistical mechanics of chain
molecules and some additional assumptions, has proved to work for
polar rubbers, such as NBR and CR (polychloroprene) [7] and seems to
perform well for NBR=TPU blends, too.

The adopted assumptions of the model are the following:

(1) Strain induced secondary network breakdown occurs when sec-
ondary linkages break and disappear. This happens when linkages
are subjected to a certain critical force imposed on them by pen-
dant network chains.

(2) Network chains in a secondary network are of different lengths.
The distribution of their average chain vectors is assumed to be
Gaussian. Hence, upon strain only the chain vectors of chains with
a certain length undergo affine transformation, whereas trans-
formation of chain vectors of other chains is nonaffine. Thus for
different chains the critical force needed to break a linkage is
attained at different strains. Subsequently, at any strain G0 is
proportional to the density of still existing linkages at that strain,
whereas G00 is proportional to the linkage density change at that
strain.

(3) The secondary network thermal breakdown is assumed to be a
thermally activated process.

2.1. Effect of Strain

From statistical mechanics of chain molecules it is well known that the
chain vector distribution in unstrained state, w0ðrÞ, is Gaussian,
possessing the following form [8]:
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w0ðrÞ ¼ ð3=2phr2iÞ3=2 expð�3r2=2hr2iÞ; ð1Þ

where r2 ¼ x2 þ y2 þ z2 in Cartesian coordinate system with one end of
a network chain in its origin and hr2i is the mean square of the chain
vector r. For chain vectors transformed affinely in strain, i.e.,
r ¼ flgr0, where flg is the gradient deformation tensor and r0 the
chain vector in unstrained state, the distribution function (1) is
transformed accordingly into [8]

wðr; lÞ ¼ ðdetflgÞ�1w0ðflg
�1rÞ: ð2Þ

At low strains, the determinant factor accountable for volume changes
can be neglected.

For shear strain, used in this work, the principal values of the
tensor flg are l1 ¼ l, l2 ¼ 1 and l3 ¼ 1=l where l represents the
deformation ratio, i.e., the ratio of specimen’s lengths in strained and
unstrained state, respectively. Substituting this into Eq. (2) and
neglecting the determinant term, distribution of affinely transformed
chain vectors turns into

wðr; lÞ ¼ ð3=2phr2iaff Þ
3=2 exp½�r2ðl2 þ l�2 þ 1Þ=2hr2iaff Þ�: ð3Þ

Since shear strain is expressible in terms of deformation ratio as
g ¼ l� l�1 [9], the distribution (3) can be rewritten as a function of g in
the following way:

wðr; gÞ ¼ ð3=2phr2iaff Þ
3=2 exp½�ð3 þ g2Þr2=2hr2iaff Þ�

¼ w0ðrÞ expð�g2r2=2hr2iaff Þ: ð4Þ

As assumed, network linkages break when subjected to a certain
critical force. According to statistical mechanics of a single chain, the
elastic force deforming the chain is proportional to the corresponding
chain vector [5], i.e., f ¼ 3kTr=hr2i where T is the temperature and k
the Boltzmann constant. The needed critical force, fc, to break a sec-
ondary linkage is then proportional to a certain critical chain vector,
rc, and given as

f c ¼ 3kTrc=hr2i: ð5Þ

The fraction of unbroken linkages with pendant network chains of
affinely transformed chain vectors at deformation g, naff(g), is simply
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given by the fraction of chains whose chain vectors do not exceed the
critical chain vector rc. Using distribution (4), this fraction is given as

naff ðgÞ ¼
Z rc

0

wðr; gÞ4pr2dr

¼ 4p
Z rc

0

w0ðrÞ expð�g2r2=2hr2iaff Þr2dr ð6Þ

where 4pr2 dr is the volume element dV in Cartesian coordinate
system. For small deformations, the value of this integral is approxi-
mately

naff ðgÞ � naff ð0Þ expð�r2
cg

2=2hr2iaff Þ; ð7Þ

or, in terms of the critical force fc from Eq. (5),

naff ðgÞ � naff ð0Þ exp½�ðfc=3kTÞ2hr2iaff g
2=2� ð8Þ

where naff ð0Þ is given as

naff ð0Þ ¼ 4p
Z rc

0

w0ðrÞr2dr ð9Þ

and represents the fraction of unbroken linkages in unstrained state.
It is worth noting that naff(0) does not equal unity, which can be
attributed to thermal breakdown of linkages in the moment of for-
mation.

Equations (7) and (8) show what low strain functional dependence
of G0 (proportional to linkage density) would be like, if all network
chains were equally long, with hr2i ¼ hr2iaff , since the length of a chain
is proportional to its hr2i.

But according to assumption 2 all network chains are not of equal
length and chain vector transformations of those with hr2i 6¼ hr2iaff are
nonaffine in strain. However, deformation ratio, say l0, of such chain
vectors is related to deformation ratio of affinely transformed vectors l
through the relationship between their corresponding relative defor-
mations e0ðe0 ¼ l0 � 1Þ and eðe ¼ l� 1Þ, respectively, as

e0 ¼ ehr2i1=2
aff =hr

2i1=2
: ð10Þ

Considering this equation and the fact that for small e g¼ l7 l7 1 ¼
1þ e7 (1þ e)7 1 � 2e, replacement of g in Eq. (8) by the expression
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ghr2iaff
1=2

=hr2i1=2 would make Eq. (10) valid also for network chains of
an arbitrary hr2i. The fraction of unbroken linkages in this generalized
case, ng(g), is then

ngðgÞ � ngð0Þ exp½�ðfchr2iaff =3kTÞ2g2=2hr2i�: ð11Þ

This equation is sensible because it demonstrates that for shorter
chains the necessary critical force to break secondary linkages is
attained at lower strains than that for longer chains. In other words,
the density of secondary linkages with shorter pendent chains
decreases faster with increasing strain than that with the longer ones,
which is plausible regarding the assumptions of this model.

In order to obtain the total fraction of still existing secondary lin-
kages at a given strain, it is necessary to account for differences in
chain lengths within the secondary network. Distribution of corre-
sponding average chain vector values, hr2 i1=2, is assumed to be
Gaussian (assumption 2), possessing the following form:

wðhr2i1=2Þ ¼ ð3=2ph�rr2iÞ3=2 expð�3hr2i=2h�rr2iÞ; ð12Þ

where h�rr2i is the overall average of the chain vector mean squares in
the network. The total fraction of unbroken linkages at the strain g is
given by combination of Eq. (11) and distribution (12) as

nðgÞ ¼ 4p
Z 1

0

wðhr2iÞ1=2ÞngðgÞhr2idhr2i1=2 ð13Þ

where integration is carried out over the entire space, since hr2 i1=2

can theoretically assume any value. When substituted for w(hr2 i1=2 )
and ng(g), this integral assumes the form

nðgÞ ¼ A

Z 1

0

hr2i1=2 expð�ahr2i � bg2=hr2iÞdhr2i ð14Þ

where a � 3=2h �r2r2i, b� (fchr2 iaff=3kT)2 =2 and A � 2pnð0Þ ð3=2ph�r2r2iÞ3=2.
Its evaluation yields the following final results:

nðgÞ ¼ nð0Þð1 þ cgÞ expð�cgÞ ð15Þ

and

�dnðgÞ=dg ¼ nð0Þc2g expð�cgÞ ð16Þ
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where c � fchr2iaff =31=2h �r2r2i1=2kT, representing a dimensionless and for
low strains a strain independent quantity. Multiplying the numerator
and the denominator of this expression by the Avagadro number, NA,
it is immediately conceivable that the constant c can be rewritten as
c�Wb=31=2 RT where R is the gas constant and

Wb � NAfchr2iaff =h �r2r2i1=2; ð17Þ

a quantity with the unit of energy per mol, characteristic of material,
which may be named characteristic energy for secondary linkage
breakdown and subsequently secondary network breakdown. It can be
easily determined from the measured dynamic mechanical functions
and, as shown later, its values are typically within the range of
energies characteristic for secondary interactions.

Being proportional to the linkage density in the network and thus to
the total fraction of unbroken linkages at a given strain, G0(g) is then
given as dictated by Eq. (15):

G0ðgÞ ¼ G0ð0Þð1 þ Wbg=31=2RTÞ expð�Wbg=31=2RTÞ ð18Þ

where G0 (0) is the initial storage shear modulus, i.e., at g¼ 0.
At a given strain, G00ðgÞ is proportional to deformational change of

the total fraction of unbroken linkages and thus dictated by Eq. (16).
As the function given by Eq. (16) experiences maximum at gmax¼ c7 1 ,
i.e., at the strain amplitude of the strongest decrease of secondary
linkage density, G00ðgÞ can be written in terms of its maximum value,
G00

max(at gmax), as

G00ðgÞ ¼ G00
maxðWbg=31=2RTÞ expð1 � Wbg=31=2RTÞ: ð19Þ

The functions G0(g) and G00(g) as given by Eqs. (18) and (19), i.e.,
with strain independent Wb, possess the very forms demonstrated in
Figure 1. But their validity is limited to low strains because only for
low strain values approximations made in deriving them are possible.
The reason they well describe the strain induced breakdown of carbon
black secondary agglomeration network in rubbers is that the entire
process shown by Figure 1 in that case occurs in the low strain region
(up to g� 0.2) [4].

For polar rubbers and other polar rubber-based systems, such as
NBR=TPU blends, the strain range for secondary network breakdown
is much larger, although of similar form. This, in fact, is the incentive
to extend the validity of existing equations to higher strains [7].
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Indeed, Eqs. (18) and (19) may be used for higher strains as well, but
in this case the characteristic breakdown energy Wb becomes strain
dependent Wb(g). Although mathematically formal, the reason for this
has also a physical explanation.

As the secondary linkages break and vanish with increasing strain,
the average distance between still existing topologically adjacent lin-
kages increases, making the denominator of the right-hand side of
identity (17) ever larger. Plausibly assuming the critical force fc to be
independent of strain, this makes Wb(g) to decrease from its initial
value Wb(0) toward a low terminal value Wb(1), when the network is
destroyed. Its functional form may be obtained by the following next
few steps.

Experimental evidence reveals that except at very low strains, the
right-hand side of Eq. (15) is governed by the exponential term.
Accounting for this, combination of Eqs. (15) and (16) gives approxi-
mately

dnðgÞ=nðgÞ � �WbðgÞdg=31=2RT: ð20Þ

Next, from the evident relation

nðgÞh �r2r2ig
3=2 ¼ const:; ð21Þ

where h �r2r2ig
3=2 represents the basic volume element associated with a

linkage at shear strain g, it follows that

dnðgÞ=nðgÞ ¼ �dh �r2r2ig
3=2

=h �r2r2ig
3=2

: ð22Þ

Finally, identity (17) provides the relation

dWbðgÞ=WbðgÞ ¼ �dh �r2r2ig
1=2

=h �r2r2ig
1=2

: ð23Þ

Combination of Eqs. (20), (22) and (23) yields the equation

dWbðgÞ=Wb
2ðgÞ ¼ �dg=33=2RT ð24Þ

from which, when integrated from Wb(0)7Wb(1) at g¼ 0 to
Wb(g)7Wb(1) at g and after rearrangement, the following functional
form for Wb(g) is obtained:

WbðgÞ ¼ Wbð1Þ þ f1=½Wbð0Þ � Wbð1Þ� þ g=33=2RTg�1: ð25Þ
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The constants Wb(0) and Wb(1) can simply be determined from the
measured G0(g) and Eq. (18). For low strains the exponential term of
the right-hand side of Eq. (18) can be expanded into series, and,
keeping the first two terms, the equation turns into

G0ðgÞ � G0ð0Þ½1 � Wbð0Þ
2g2=3ðRTÞ2� ð26Þ

from which Wb(0) can easily be calculated.
At high strains Wb(g) becomes Wb(1) and Eq. (18) can be approxi-

mated by

G0ðgÞ � G0ð0Þ½Wbð1Þg=31=2RT� exp½�Wbð1Þg=31=2RT�: ð27Þ

Using this equation, Wb(1) can simply be determined from the slope of
the linear plot ln[G0(g)=g] vs. g.

With so-determined Wb(0) and Wb(1) substituted in Eq. (25) and
this in turn in Eqs. (18) and (19) excellent agreement of the model is
obtained with the measured G0(g) over the whole strain range. As
predicted, in the case of G00(g) the agreement with experiment is
poorer, particularly at low strains, because the model does not account
for internal friction. Nevertheless, the model correctly predicts the
strain amplitude shift of G00

max for different temperatures and TPU
contents in NBR=TPU blends. Specifically, G00

max is expected to shift
toward lower strain amplitudes with increasing both temperature and
volume fraction of TPU. In the first case, the reason is that due to
intensified thermal molecular motion at elevated temperatures, the
critical force for linkage breakdown, fc, given by Eq. (5), is attained at
lower strains. In the second case, the same is true because increasing
content of TPU produces higher secondary linkage density in blends,
making the topologically adjacent linkages to be closer to one another
and thus the attainment of the force necessary to break them at ever
lower strains.

The functions G0(g) and G00(g) as given by Eqs. (18) and (19) tend
toward zero when g!1 , although in reality they decrease toward low
but finite values G0(1) and G00(1), respectively. At high strains, the
secondary network is practically destroyed, but some secondary lin-
kages may still form and almost instantly disappear, whereas to finite
values of dynamic functions may also contribute some remaining
molecular entanglements. So, strictly, Eqs. (18) and (19) should be
written in terms of functional differences rather than functions alone,
i.e., G0(g)7G0(1) and G0(0)7G0(1) in Eq. (18), as well as
G00(g)7G00(1) and G00

max � G00ð1Þ in Eq. (19). But since for all sensible
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strains G0(g)�G0(1) and G00(g)�G0(1), the forms of Eqs. (18) and (19),
as written, are satisfactory.

Finally, it is worth mentioning that good agreement of this model
(which accounts for the secondary network breakdown only) with
experiment in the case of G0 rules out any effects of nonlinear vis-
coelasticity from being responsible for strain dependence of G0. This
concurrently confirms the fact predicted by the finite strain rheology
that, unlike in the case of extension, the stress-strain relation in
simple shear remains linear at finite strains, with strain independent
shear modulus [10].

2.2. Effect of Temperature

The theory of rubber elasticity predicts the storage shear modulus to
be proportional to the density of network chains, N, and temperature
in the following manner [5]: G0 ¼NkT. For perfect networks, N, in
turn, is related to the linkage density n as N¼jn=2 where j is the
average functionality of the linkages [11]. This makes the storage
modulus proportional to the linkage density: G0 /nkT. But in the case
of secondary network, the linkage density itself depends on tempera-
ture, owing to the thermal molecular motion. At given temperature
secondary linkages form and decay in a dynamic equilibrium, their
average density being constant. Upon temperature change, a new
equilibrium is established at another linkage density.

It is not difficult to envision an energy barrier that must be sur-
passed for a linkage to break (assumption 3). Indeed, experimental
evidence suggests the decrease in linkage density with increasing
temperature to be a thermally activated process, i.e., n/ exp(Ea=RT)
where Ea is the value of the energy barrier height and may be named
the activation energy for secondary linkage breakdown and subse-
quently for secondary network thermal breakdown. Taking account of
this, G0(T) has then the following form:

G0ðTÞ ¼ CT expðEa=RTÞ ð28Þ

where C is a constant. For polar blends, such as NBR=TPU, this
relation holds with high precision. Ea can simply be obtained from the
slope of the plot ln[G0(T)=T] vs. 1=T.

G00(T), too, decreases with increasing temperature, but since to this
decrease also contributes reduction of internal friction, it is difficult,
primarily at low strains, to assess individual contributions. However,
according to Eqs. (15) and (16) G0

g¼0 (at zero strain amplitude) and G00
max
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should be proportional to each other and so the functional form of the
latter should be the same as that of G0

g¼0ðTÞ.
With increasing temperature the strain amplitude gmax of the

maximum in G00 is expected to be shifted toward lower values. The
functional form gmax(T) can be obtained by examining the quantity
c�Wb=31=2 RT from Eqs. (15) and (16), since for low strains gmax¼ c7 1.
Due to different temperature dependences of the numerator and
denominator at the right-hand side of identity (17), the characteristic
energy Wb increases with increasing temperature linearly as
Wb(T)¼ k1T 7 k2 where k1 and k2 are constants. For gmax (T) it then
follows approximately:

gmaxðTÞ � 31=2Rðk1 � k2=TÞ�1 ð29Þ

and for low values of the expression k2=k1T,

gmaxðTÞ � 31=2Rk1
�1 expðk2=k1TÞ: ð30Þ

2.3. Effect of Composition

TPU in NBR=TPU blends is expected to act reinforcingly by intro-
duction of additional secondary linkages, resulting in higher network
chain density N. Analysing the effect of TPU volume fraction in the
blends, f, it can be plausibly assumed that dh�r2r2i3=2 / �df and in turn,
considering Eq. (21), dn=n2 / df. For small f’s, integration of this
yields the following dependence of secondary linkage density on
volume fraction of TPU: n(f)�n(f¼ 0)(1þKf)�n(f¼ 0) exp(Kf)
where K is a constant characteristic of material. Assuming the average
functionality of the linkages, j, to remain unchanged by the addition
of TPU and since G0 is proportional to n, the functional form of G0(f)
for low values of f is:

G0ðfÞ � G0ðf ¼ 0Þ expðKfÞ: ð31Þ

Again, due to mutual proportionality, G00
max should possess the same

functional form as G0
g¼0ðfÞ. With increasing volume fraction of TPU

the strain amplitude gmax of the maximum in G00 is expected to
decrease. Analysing again the expression c from Eqs. (15) and (16),
it turns out with the help of Eq. (5) that Wb is approximately
proportional to h�r2r2i�3=2 and gmax subsequently to h �r2r2i3=2. Its functional
dependence on the volume fraction of TPU is then:
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gmaxðfÞ � gmaxðf ¼ 0Þð1 � K 0fÞ ð32Þ

where K0 is another constant. For low values of f this equation turns
into

gmaxðfÞ � gmaxðf ¼ 0Þ expð�K 0fÞ: ð33Þ

3. EXPERIMENTAL

The Experimental part of this work comprises preparation of NBR
blends with 10, 30 and 50 phr (parts in weight per hundred parts of
rubber) of TPU in accordance with the standard ASTM D 3185-82, but
without fillers. As a rubber base in the blends, NBR (Krynac, Polysar,
27 wt.% acrylonitrile) of weight average molecular weight 373000 g
mol7 1 was used, whereas TPU (Elastolan C 90 A, Bayer) used in the
blends possessed weight average molecular weight of 170000 g mol7 1.
Dynamic mechanical functions G0 and G00 of the blends were then
measured as a function of shear strain amplitude and temperature by
the instrument Rubber Process Analyser�RPA 2000, Alpha Technol-
ogies. Measurements were carried out at the frequency of 0.3 Hz which
is low enough to permit undisturbed changes of molecular conforma-
tions in the entire chosen range of strain (from 0.01 to 9) and that of
temperature (from 30

�
C to 100

�
C). Using Eqs. (26) and (27), char-

acteristic energies Wb(0) and Wb(1) for the secondary network
mechanical breakdown were determined from the G0-values at low and
high strain amplitudes, respectively. With these energies G0(g) and
G00(g) were calculated by Eqs. (18) and (19) and compared with the
measured ones. The agreement would confirm the existence of sec-
ondary networks in NBR=TPU blends, as well as credibility of the
model itself.

Pertaining to the secondary network thermal breakdown, validity of
Eq. (28) was examined by checking for linearity of the plots
lnbG0

g¼0ðTÞ=Tc vs. 1=T for blends of different TPU contents, from which
the corresponding activation energies Ea could then be obtained.
Proportionality of G0

g¼0 and G00
max was tested by comparing plots of

lnbG0g¼0ðTÞ=Tcvs. 1=T and ln½G00
maxðTÞ=T � vs. 1=T. Additionally, Eq. (30),

describing temperature dependence of gmax, was verified by plotting
ln gmax (T) vs. 1=T for blends of different TPU contents.

Finally, the predicted effect of the blends’ composition was verified
by examining validity of Eq. (31), i.e., by plotting ln G0

g¼0ðfÞ vs. f at
different temperatures and looking for linearity which would enable
determination of the constant K. Here, too, proportionality of G0

g¼0 and
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G00
max was tested by comparing plots of ln G0

g¼0ðfÞ vs. f and ln G00
maxðfÞ vs.

f. As in the case of temperature dependence, gmax as a function of TPU
content, as described by Eq. (33), was verified by plots of ln gmax (f) vs.
f for blends at different temperatures.

4. RESULTS AND DISCUSSION

4.1. Effect of Strain

Figure 2 demonstrates strain amplitude dependence of G0 for the NBR
blend with 50 phr TPU at different temperatures. Points and curves
represent measured and by the model calculated G0(g), respectively.
Good agreement is obtained in all the cases over the whole strain
amplitude range and at all temperatures. Furthermore, the effect of
temperature gradually diminishes with increasing strain, to disappear
entirely at high strains when the secondary network is destroyed,
exactly as predicted by the model.

The corresponding values of characteristic energies Wb (0) and Wb

(1) given in the figure are within range typical for secondary inter-
action energies. As can be seen, Wb(0) increases with temperature.
This is because in identity (17) the critical force for the secondary
linkage breakdown fc (given by Eq. (5)) increases with increasing

FIGURE 2 Shear strain amplitude dependence of storage shear modulus for
NBR=TPU blend of 50 phr TPU content at the frequency of 0.3 Hz and dif-
ferent temperatures (measured: points, calculated: curves).
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temperature faster than the denominator term h�r2r2i1=2 does. On the
other hand, since at very high strains the secondary network is
destroyed, the expression Wb (1) = 31=2 RT is constant and, therefore,
Wb (1) increases only slightly with increasing temperature.

Strain amplitude dependence of G00 at different temperatures is
demonstrated in Figure 3 for NBR blends with 50 phr TPU. As
emphasized earlier, agreement of experiment with the model in the
case of G00, i.e., Eq. (19), is expected to be worse, particularly at low
strains, because the model does not consider another important energy
dissipation mechanism, the internal friction. Besides, at low strains
the secondary linkage breakdown is not yet expressed enough and
hence screened. At higher strains, though, particularly at those
beyond the strain of G00

max, the secondary linkage decay becomes
intense, while internal friction is lessened, owing to increasing degree
of molecular alignment. This makes the former the dominant energy
dissipation mechanism, resulting in improved agreement of the model
with experiment.

Figures 4 and 5 demonstrate G0(g) and G00(g), respectively, of
NBR=TPU blends with different TPU contents at the temperature
of 30�C. Here, too, good agreement of the model with experiment is
obtained over the whole strain range in the case of G0(g), while for
the foregoing reason the agreement of the calculated G00(g) with

FIGURE 3 Shear strain amplitude dependence of loss shear modulus for
NBR=TPU blend of 50 phr TPU content at the frequency of 0.3 Hz and dif-
ferent temperatures (measured: points, calculated: curves).
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FIGURE 4 Shear strain amplitude dependence of storage shear modulus for
NBR=TPU blends of different TPU contents at the frequency of 0.3 Hz and
temperature of 30�C (measured: points, calculated: curves).

FIGURE 5 Shear strain amplitude dependence of loss shear modulus for
NBR=TPU blends of different TPU contents at the frequency of 0.3 Hz and
temperature of 30�C (measured: points, calculated: curves).
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measurements is attained at higher strains only. As can be seen, TPU
acts in NBR reinforcingly at low strains, but this effect diminishes
with increasing strain and ultimately vanishes completely, when the
secondary network is destroyed.

The characteristic energy Wb (0) moderately increases with
increasing TPU content, presumably due to closer electric dipole
packing, whereas Wb(1), on the other hand, logically remains
unchanged.

4.2. Effect of Temperature

Eq. (28) predicts linear relationship between the expressions ln[G0(T) =
T] and 1=RT, the slope of the plot representing the activation energy
for secondary network thermal breakdown, Ea. This is shown in
Figure 6 for NRR=TPU blends of different TPU contents. Since with
increasing strain the differences between the blends0 G0(g) at different
temperatures diminish, as demonstrated in Figure 2, Ea also decrea-
ses, to become zero at very high strains, when G0(g) assumes the
temperature independent low value G0

g¼1. As a quantity characteriz-
ing the secondary network thermal breakdown is therefore chosen Ea

obtained from the initial storage moduli G0
g¼0 at different tempera-

tures.

FIGURE 6 Plots of lnðG0
g¼0=TÞ against 1=RT for storage shear moduli of

NBR=TPU blends with different compositions.
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It is clear from the figure that linear relationship of high correlation
is obtained in all the cases. The activation energies are all within the
energy range characteristic for secondary interactions. They slightly
decrease with increasing TPU content, which can be attributed to
gradual thermal stabilization of the secondary network by TPU.

Figure 7 demonstrates comparison of G0
g¼0ðTÞ and G00

maxðTÞ which
should, according to the model, be proportional to each other. The
taken moduli values are for the blend of 50 phr TPU content. If G0

g¼0

and G00
max were strictly proportional to each other, the logarithmic plots

lnbG0
g¼0ðTÞ=Tc vs. 1=T and ln½G00

maxðTÞ=T � vs. 1=T given in the figure
would be parallel. Despite high correlation linearity of the plots
obtained in both cases, the slopes slightly differ. This can be ascribed
to intesification of internal friction with decreasing temperature,
which results in somewhat lower slope in the case of G00

maxðTÞ.
The shift of G00

max toward lower strain amplitudes with increasing
temperature is clearly seen on Figure 3 and predicted by Eq. (30).
Figure 8 demonstrates plots of lngmax (T) vs. 1=T for blends of different
TPU contents. Good agreement is obtained in all the cases, confirming
validity of Eq. (30).

FIGURE 7 Examination of proportionality of G0
g¼0 and G00

max for NBR=TPU
blend of 50 phr TPU content through plots of lnðG0

g¼0=TÞ and lnðG00
max=TÞ vs.

1=RT, respectively.
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4.3. Effect of Composition

Reinforcing effect of TPU in NBR=TPU blends and their vulcanizates
is already evident from Figures 3 and 4. To verify its quantitative
prediction, i.e., Eq. (31), plots of lnG0 (f) (G0 taken at zero strain
amplitude) vs. volume fraction of TPU f are made for different tem-
peratures, as shown in Figure 9. Linear relationship of high correla-
tion confirms the accepted assumptions on the effect of blends’
composition. As can be seen, the constant K slightly increases with
increasing temperature. This is presumably due to stronger thermal
molecular motion at higher temperatures, causing lower secondary
linkage density and thus making more space available for new lin-
kages to form. The result is a stronger relative increase of linkage
density with increasing amount of TPU at higher temperatures than
the one at lower temperatures.

Similarly to Figure 7, examining proportionality of G0
g¼0 and G00

max at
different temperatures, Figure 10 shows comparison of these moduli of
blends with different TPU contents at 30�C. Again, the plots, this time
of ln G0

g¼0ðfÞ vs. f and ln G00
maxðfÞ vs. f, are linear, as predicted, but

somewhat unparallel. The slope in the case of G00
maxðfÞ is lower due to

intesifying internal friction, this time with increasing TPU content.
The shift of G00

max toward lower strains with increasing TPU content,
as predicted by Eq. (33), is immediately perceivable on Figure 4.

FIGURE 8 Temperature dependence of shear strain amplitude gmax (at which
G00

max is attained) for NBR=TPU blends of different compositions.
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FIGURE 10 Examination of proportionality of G0
g¼0 and G00

max at the tem-
perature of 30�C through plots of ln G0

g¼0 and ln G00
max vs. volume fraction of

TPU in NBR=TPU blends, respectively.

FIGURE 9 Dependence of zero strain amplitude storage moduli G0
g¼0 of

NBR=TPU blends on volume fraction of TPU at different temperatures.
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Figure 11 shows plots ln gmax (f) vs. f at different temperatures. Once
more, high correlation linear relationship is obtained in all the cases, v
indicating Eq. (33).

5. CONCLUSION

Several important results have been obtained by relating rheological
properties of polar polymer blends with their secondary morphological
structures. Good qualitative and quantitative agreement with
experiment of the proposed theoretical model for strain, temperature
and compositional dependence of the blends’ dynamic mechanical
functions substantiates both the very existence of secondary networks
formed by secondary interactions in these materials and the
assumptions on which the model is based. Furthermore, by the
agreement of the model with experiment, means are provided to
determine two energies characterizing the secondary networks: the
characteristic energy for network’s strain induced breakdown and
activation energy for its thermal breakdown. The values of these
energies are of the magnitudes typical for energies of secondary
interactions. The model also enables determination of a characteristic
material constant pertaining to compositional dependence of the
blends’ dynamic functions. And finally, although in this work the

FIGURE 11 Dependence of shear strain amplitude gmax (at which G00
max is

attained) on volume fraction of TPU in NBR=TPU blends at different tem-
peratures.
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model is used to describe rheological properties of NBR=TPU blends in
terms of their secondary morphology, the model itself is rather gen-
eral, since it is not associated with any specific polar polymer
blends�after all, it was originally devised to study carbon black sec-
ondary agglomeration networks in rubbers. So, likely, dynamic
mechanical functions or other equivalent and easily measured rheo-
logical quantities could be used in conjunction with the model to study
morphology and its association with reological properties of any rela-
ted materials, including covalently crosslinked ones.
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